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A quantum theory of a free massless spin-3/2 field on Einstein spaces (Rab = 
Ag~b ) is formulated in an algebraic framework. Attention is confined to the 
structure of the quantum operator algebra. In particular, the issue of positivity of 
the andcommutator is investigated and found to depend on whether or not the 
space-time admits "zero-frequency" neutrino solutions. Using methods devel- 
oped for the purpose, a class of space-time that does not admit neutrino "zero 
modes" is characterized. An appendix introduces a useful technique for obtaining 
an initial value formulation of spinor field equations. 

1. I N T R O D U C T I O N  

The study of  quan tum fields on a fixed background space-time is an 
impor tant  step towards unders tanding quan tum processes in the presence of  
gravity. It is of interest, therefore, to know what features of  the underlying 
space-time give rise to new quan tum phenomena.  One particular direction 
to search for these new effects is to analyze the role of the global structure 
of  space-time. For  example, one may ask if the topology of  the space-time is 
reflected in quan tum field theory. Some authors (Sorkin, 1979; Ashtekar 
and Sen, 1980) have recently addressed this issue in the context of  the 
Maxwell field. That  they indeed find a new feature is due to the following 
happy  circumstances. In a multiply connected space having "wormholes"  or 
"handle"  topology, one can associate a charge with each "handle";  it is in 
the structure of  MaxweU's equation that the charges so defined stay con- 
stant  in time as long as the topology does not change. At the quan tum level, 
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these charges arise as operators which form the center of the quantum 
operator algebra, i,e., the charges commute with every element of the 
algebra. This feature can be interpreted as a statement of charge superselec- 
tion. 

Are there other fields that show similar interesting quantum behavior? 
While in principle any field theory in curved space-time can be examined, 
the cost of complications in a detailed analysis limits the number of 
candidates to only a few. It seems reasonable to consider free (linear) fields 
and to expect that the qualitative features of their quantum behavior survive 
in more complicated nonlinear or "interacting" models. One example is the 
spin-3/2 field. In fact, the spin-3/2 field turns out to be the simplest 
nontrivial "higher spin" field which is amenable to treatment in curved 
space-time. 

The purpose of this paper is to formulate and examine a quantum 
theory of a massless spin-3/2 field in curved space-time. (The field equation 
is the massless Rarita-Schwinger equation.) To avoid inconsistencies fol- 
lowing from algebraic conditions on the field due to the curvature of 
space-time, one considers only space-times which are "Einstein spaces," i.e., 
solutions of the vacuum Einstein equation with cosmological constant. The 
quantum theory is formulated in an algebraic framework. In this approach, 
the "classical" field is regarded as a c-number spinor field on the space-time. 
The algebra of q-number operators is then constructed by isolating a 
preferred structure at the classical level. This structure is an inner product 
on the space of data and it determines the anticommutation relations. The 
main result which exposes the role of the space-time is that the anticommu- 
tation relation is positive definite if and only if the space-time does no t  

admit solutions of the neutrino equation which are in a certain sense 
"zero-frequency" modes or "static." More precisely, the neutrino "zero 
modes" in a general space-time are elements of the kernel of a linear elliptic 
operator on a Cauchy slice Z obtained by "3 + 1" decomposition of the 
neutrino equation relative to Z and setting the time derivative to zero. It 
appears that the topology of Y. does not enter these considerations in any 
direct way. In the analysis of these issues, an initial value formulation of 
spinor field equations proves to be convenient. To this end, a notion of 
"3 + 1" decomposition of spinor fields and spinor calculus on the submani- 
fold Z has to be introduced. These techniques are of interest in their own 
right and the spin-3/2 theory that we consider here serves to illustrate their 
u s e .  

In Section 2 we discuss the classical aspects of the spin-3/2 equation. 
In particular, the inner product on the space of data is defined and a 
criterion for its positivity is obtained. In Section 3 the algebra of quantum 
operators is constructed and in Section 4 the role of space-time in dictating 
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its structure is discussed. We conclude with a brief discussion of the main 
results in Section 5. Appendix A introduces a technique for "3 + 1" decom- 
position of spinor equations and Appendix B sketches a proof that the 
propagation of the spin-3/2 field is causal. 

2. THE SPIN-3/2 FIELD 

2.1. Field Equation. Consider a globally hyperbolic, orientable space- 
time (M, gab). 2 Such space-times always admit a spinor structure (Geroch, 
1970) thus enabling us to consider spinor fields on M. We shall work with 
two-component or Weyl spinors (rather than Dirac four-spinors) and our 
notation will be that of Pirani (1964). 

A zero-rest-mass field of spin s is usually described by a totally 
symmetric spinor q~AB...C with 2s indices, s>0,  satisfying the (conformally 
invariant) free field equations 

(1) 

where V AA' is the spinor form of the covariant derivative on (M, gab)" ThIs 
is the generalization of the flat space equations (Penrose 1965a). Thus, for 
example, the two-component neutrino equation is XTA'A?~ A--0 and the 
source free Maxwell equation is V AA'~A B =0, where ?~A is the neutrino field 
and q~AB the Maxwell field, related to the skew tensor field Fab =q~ABeA,W + 
~A,B,eAB. A spin-3/2 field according to this prescription is q'<ASC) satisfying 

v =0 (2) 

However, in nonflat space-times one encounters the following difficulty. 
Operating with V Do, and contracting D', A' and D, B we obtain the 
algebraic condition known as a Buchdahl condition 

�9 t' Bcz q, A B c  --0 (3) 

where '~ABCO is the spinor form of the Weyl tensor. 3 This is a strong 
restriction on the space-time and the field and in general will have very few 
solutions. Clearly one must look for a different spinor field with three 
indices satisfying some field equation in curved space-times. This is sug- 
gested by an alternative formalism for spin s fields in flat space which has 

2Our  convent ions  axe the following: gab has s ignature  ( +  -- - - - )  and  the curvature  tensors axe 

defined by [Xra~T b-- ~T b ~T a]vc= RabcdVd;Rab = Rambm; and R =  Rabg ab 
3~or  the sp inor  form of curvature  tensors see Pirani  (1964). 
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been known for quite some time (Fierz and Pauli, 1939; Fierz, 1940; 
Garding, 1945). Here, a "spin"-s field is a spinor +M .... Q'A ...K with 2s 
indices, 4 symmetric in both sets of indices and satisfying 

VAA'~k M .... Q 'A.- .K=0 (4) 

This equation suffers from the disadvantage that (in flat space) it is not 
irreducible under the inhomogeneous Lorentz group, having solutions which 
are a mixture of spin s, s -  1 . . . . .  0, or 1/2. In f lat  space, the field q~M .... r K 
satisfying (4) is in fact a potential for the field q~<M...QA...K) satisfying (1), 
the two fields being related by r162 = x7 M M ' "  " " ~ Q Q ' ~ M  . . . .  Q ' A . - . K "  

The lower spin parts of ~kM .... Q'A.-.K correspond to gauge freedom which 
does not affect the pure spin s field q'(M...QA...K) (for details see Penrose, 
1965a). 

In particular, we consider a sp in-3/2  field in curved space-time as a 
field q~A'(sc) satisfying 

v Bs"r ----0 (5) 

This equation is in fact the massless Rari ta-Schwinger  equation S (Rarita 
and Schwinger 1941) extended to curved space-time. Are there any 
Buchdahl conditions that follow from equation (5)? It is easy to check that 
there are none if the space-time satisfies the vacuum Einstein equation with 
or without cosmological constant Rob = Ag~b. For instance, applying V B, c 
to equation (5), 

0 =  x7 B, c x7 BB'~A,BC A'B'BC 

which is identically satisfied when d~A,B,BC (which is the spinor form of 
Rob -- �88 ) vanishes. 

Taking equation (5) as the field equation therefore forces one to a 
restricted class of space-times, In return for this loss of generality, however, 
one obtains a "sensible" quantum theory (as we shall presently show). One 

4The numbers of unprimed and primed indices are unrelated. Only the total number of indices 
must be 2s. 

~The massive Rarita- Schwinger field is, in our notation, a pair (~kA'{Sc), q~(A'S'~C) satisfying the 
equations 

Setting m=0 one obtains a "two-helicity" massless spin-3/2 field. Here we are considering 
(for convenience) only a "one-helicity" spin-3/2 theory which corresponds to identifying 
r with ~CA'B" 
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could have considered an alternative, less stringent field equation 

v ~B"~A')cB : 0  (5') 

which does not lead to any Buchdahl condition. The field described by (5') 
can therefore be considered on arbitrary space-times. However, the main 
issue that argues against (5') is that a "sensible" quantum theory cannot be 
formulated. As we shall indicate in the next section, the essential reason for 
this difficulty is that one would be forced to adopt a Hilbert space of states 
with an indefinite metric or, equivalently, the anticommutator of the field 
operators would be indefinite. 

For completeness, we note that as a consequence of (5), %'sc  satisfies 
the wave equation 

[] q:a'Bc -2't'BCM:; ~ba "Mu + ~ R %'Bc = 0 

To summarize, we consider spinor fields of the type d/a,(Bc~ satisfying the 
equation V ss'~a,Bc =0 as our basic field of the spin-3/2 theory in space- 
times which satisfy Rob = Ag~b. 

2.2. " 3 +  r '  Decomposition of the Field Equations. The field ~Pa'(sc) has 
six complex components and there are eight complex equations ~7 Ba'~pA,BC 
= 0. In order to count the true dynamical degrees of freedom of the field, it 
is convenient to obtain an initial value formulation relative to a given 
Cauchy surface. In Appendix A, the technique for doing this is discussed. 
The basic idea is this: FIX a Cauchy surface E with an everywhere timelike 
future-directed unit normal vector field t aa'. This vector field, regarded as a 
Hermitian spinor, provides us with a distinguished Hermitian inner product 
on the space of (say) unprimed spinors; equivalently, t aA' provides us with 
an isomorphism between primed and unprimed spinors at each point of Z. 
In brief, the field t an' on E enables us to convert primed indices into 
unprimed indices; the resulting unprimed spinor fields on E are in fact 
SU(2) spinors. Since our field equation is first order, the data on E are just 
the field ~ka'sc restricted to Y.. In terms of SU(2) spinors, the data are given 
by (see Appendix A) 

~asc : :- ~/-2 t aa'r (6) 

q~Asc can be decomposed into irreducible pieces as 

~PABC =~Pa~BC) =~P~A~C) 2 -- :a~B%) (7) 
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where 

AA' nO: = ~BA +,'*'C = ~ t  q'A'AC (8) 

In order to decompose  the field equation into an equat ion on the hyper- 
surface Z, one needs to write the derivative operator  in terms of  a spatial 
derivative opera tor  which refers only to the intrinsic geometry of  E and a 
suitable time derivative. Such a decomposi t ion  involves the way E is 
embedded  in the space-time and how one chooses to evolve the surface in 
time. As a result one has expressions involving both the extrinsic curvature 
%b of E and the lapse function N. Using techniques of Appendix  A, one 
obtains the following equations in "3 + 1" form: 

~1 t" ~7 I~(ABC) _ II/D (AB Dc)DNN -{- DM(A~Bc)M q- +~(ABC)  

1 D !  M 1 

# 

l 7rCMDAI~CDM qjDBADDBN 
t. ~7 ~?A + CM + - -  + 4 ~ ? A  = 0  

We 

(9.2) 

1 
DCMI~B CM -~- 7qTcMDB~,/DCM =0 (9.3) 

DAB is the spatial derivative operator  and t. V = t gg' V MM,. 6 The first two 
equations are evolution equations for the data  (+(ABC), 7.4) while the last 
equat ion is a constraint  equation. A convenient  form of equation (9.3) in 
terms of the pair (q~(ASC), ~A) is 

DAB~(cAB)+ 7 -}- --DcM'OMq---'~'rlc:O (9.3 ')  

Since there are two constraint  equations on the data, only four of  the 
six complex functions can be freely specified as initial data. Of the six 

6A convenient notion of time derivative for the spinor fields on E, given by P. Sommers (1980), 
is iJA:=I'~TrlA--rIBDABN/N. With this definition, ~AB=0 and for v,=--v(Ae) any spatial 
vector, ~Ao) = l)'a =ho bt" ~7 V h. Since we shall not have occasion to use the evolution equa- 
tions explicitly, we leave the time derivative in the primitive form t. ~7. 



Quantum Theory of Spin-3/2 Field 7 

evolution equations, two are required to preserve the constraint, thus leaving 
four dynamical equations for four independent data. As shown in the next 
section, two of the four degrees of freedom are "gauge"; the remaining two 
are then the true dynamical degrees of freedom of the field. 

2.3. Space of Pure Spin-3/2 Fiehis. Let V denote the space of solu- 
tions of the field equation (5). Linearity of the equation implies V is a vector 
space (over C). It is easy to check that V has a proper subspace whose 
elements are of the form VA'tB?~C), where ~c is a neutrino field, i.e., 
V cc'~ c =0. v Thus, every neutrino solution gives us a solution of our field 
equation. This is a spin-1/2 contribution to the field and may be removed 
by imposing a gauge condition. However, there is no canonical way of fixing 
a particular gauge. This is analogous to the situation in electromagnetism 
where the freedom to add a gradient of a function to the vector potential 
cannot be removed by a covariant gauge condition (Strocchi, 1967). One 
might call the spin- l /2  piece the "longitudinal gravitino" in analogy with 
the "longitudinal photon." 

In order to remove the longitudinal contribution we consider equiva- 
lence classes of fields [q'A'BC], where two fields qJA'BC and ~A'BC are equiva- 
lent if and only if 

- = v ( 1 0 )  

where kc  is some neutrino field. These equivalence classes represent the 
pure spin-3/2 contribution of the original field ~pA,(BC). v 

We now give a precise definition of the space of pure spin-3/2 field in 
terms of its data induced on a Cauchy slice E. Let r denote the space of all 
pairs (q)tABC),*)A) of C ~ spinor fields on g which satisfy the constraint 
equation (9.3') and which are square integrable in the norm 

u= ( ~PtASC), ))A ) 

where dE is the volume element defined by dEsB, = ton,dE. +(ASC~t stands 
for (2)3/2tAA'tBB'tCC'~(A,B,C,) and )lat=~tAA'~A,. (The factor 1/3 in the 
second term in the integrand is only for later convenience.) Denote by z 0 the 
subspace of r consisting of ("pure gauge") data pairs of the form 
(t{AA'VslA'IXc),t" V XC), where )~c is a neutrino solution of compact 
support on Z. The space W = z / ~  o, where "~o is the completion of z 0 in the 
norm ( , ), will be called the space of pure spin-3/2 data. Elements of ~r 0 
will be called pure gauge data. 

7See, for example, de Wet (1940); Rarita and Schwinger (1941). 
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It is this space W which will be relevant for the quantum theory. 
However, before we can construct the quantum algebra, an additional 
structure is needed at the classical level. This structure is an inner product 
on W which we study in the following sections. 

2.4. Inner Product on W. There is a preferred inner product on the 
space of solution, V, which induces an inner product on W. Fix a Cauchy 
surface Y.. Then for any two solutions ~k,~'sc, q~,csc E V, we define a product 

(11) 

[The factor ( - v~ - )  is for later convenience.] In terms of the data on Y, 
corresponding to g'A'BC and ~/A'sc, viz., u = (  g,~,4~c), ~A) and V=( ~ASC> ~A), 
(11) is given by 

(12) 

By virtue of the field equation, the integrand on the right-hand side of 
(11) is a conserved current and therefore the definition of ~,(,) is indepen- 
dent of choice of Y.. Furthermore, although the inner product defined by 
(12) appears as a sesquilinear map "t: r •  ],(,) is in fact a map from 
W•  W to C. To see this we show that "{(v, u0)=0,  V v E r ,  u o E~  o [Then, 
under gauge transformation u ~ f ~ = u + u  o, ~,(v, f i )=y(v ,  u), i.e., ~,(,) is an 
inner product on gauge equivalence classes.] Consider fi0 = V A,(B?~C) where 
)~c is a neutrino field of compact support on Z. Since for a neutrino field 
~k C, V C,C~. C =0,  V C,[C~.A] = �89 V C,M ~kM =0. Hence 

V A,B~A = 17 A,(B)kA) 

Next, using (11) 

= [ q7 d YB'" 
e s  

: s v . . (  M ) d Z /  

for all solutions V=~A'(SC) of the field equation (5). In the last step we have 
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integrated by parts and used the field equation. Define a (complex) bivector 
F[~/,1 =~r MeAB. Then 

7(t3, u0)=  ~ - ~ V  oF [o~l dZ h = 0 

In the last step we have used Stokes' theorem and that F [~hl is of compact 
support. Thus, if u o E~" o, vEz ,  respectively denote the data for rio and ~3 o, 
u Uo)=0 V v ~ - ,  u o ~%. Here t' is being used in the sense of (12), i.e., as 
the induced inner product on the data. Finally, since 7 is continuous in the 
(,> norm, y(V, Uo)=O, YvEs', Uo E~ o. 

Note that each term in the integrand in (12) is manifestly positive 
definite (since, for example, OA*~ A/>0). However, since the terms occur with 
opposite sign, it is not clear that 1, is of a definite sign. 

2.5. Positivity of 7(,)- Henceforth, we shall treat 7 as a map y: 
W•  W--* C. As we shall see in the next section, this map plays a central role 
in the construction of the algebra of quantum operators. Furthermore, the 
physical interpretation of the resulting quantum theory hinges crucially on 
whether or not 1' is positive. In this section we find a criterion that ensures 
positivity of 7- 

While the detailed analysis of this problem is somewhat involved, the 
basic idea is quite simple. To obtain a sufficient condition for positivity of 
1,, the strategy is to use the gauge invariance of 

y(u ,  u ) =  ~[+(A"C)*+(A~C) -- �89 dZ (13) 

under addition of a neutrino contribution (I(AA'•BIA,IXC), t" V XC) to 
U =(g'r ~A)" If we can find a neutrino datum X c such that 

(14) 

then 7(u, U)----fz~(ABC)*~ABcdY~, which is manifestly positive. Thus, the 
positivity of y is ensured if, for a given ~c, 

t" V Xc +nc=O (15) 

can always be solved for a neutrino datum ?t c. Since 7t c is a neutrino datum, 
t -V  X c actually stands for --~/2[DAc~ A +(Tr/2v~-)Xc] (It is the trace of the 
extrinsic curvature of E) which is evident from the " 3 + 1 "  form of the 
neutrino equation (A.33). Thus (15) can be expressed in the form 

(LX)A'=DABX B + ( 7r/2~/2 )?tA =~  A (16) 
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We now proceed to obtain conditions that ensure the existence of solutions 
of (16). 

Consider the space of smooth spinor fields ~A of compact support on Z 
with a norm defined by (O,O)=f~A*OAdE. Denote this space by H and 
l e t / t  be its Cauchy completion. Let L: =D~Be 8c +(~ /2~ - )~A c be a linear 
operator on H defined on the dense domain D(L)=H,  and let L* be the 
adjoint of L in the norm ( , ) .  

Lemma 1. If K e r L * = ( 0 )  then for every ~ A ~ H  there exists a 
sequence ()~} in H such that lim(Lk")A =~A and conversely. 

Proof. Consider H = I m L ~ ( I m L )  • Now, ~b~KerL*~V~/ED(_L) 
(~,  L~/)=0** ~ ( I m  L) • Hence K e r L * =  (0} ~*(Im L) • = {0} **H= 
Im L. In other words, K e r L * =  {0} iff every element of H can be obtained 
as the limit of a Cauchy sequence in Im L. 

The condition K e r L * = { 0 )  is also necessary for the positivity of 7. 
Suppose KerL*~{0} ;  then we can always find data of the form (0, v/A), 
~A 4:0 because the constraint equation (9.3') reduces to (L*~/)A =0  when 
dZ~ABC) is zero. For the data (0, ~/,~)= u, 

which is manifestly negative. 
Conversely, we show that if KerL* = {0) then y(u, u ) = 0 = u ~  0 i.e., u 

is pure gauge datum. Let u = ( + , ~ )  and choose a sequence of data u " =  
( q~", ~" ) given by 

+~,4Bc) - tABC) +tfA ~'V BIA'I?~"C) 

such that Lim/]nA't~,~=0. (This is possible by the lemma.) Then since 
7(u, u) = y(u", u") = 0, Lirn ~"~ABC)t~"(ABC ) = 0 SO Lira ~"A = 0 and 
Lim q~"~ABC) =0.  In other words (+, 71)=(lim t(A A' ~7 BiA,l~knC,,]jm t" V ~,nC), 
which is in fact an element of ~0- We have shown the following. 

Theorem. A necessary and sufficient condition for 7(,) to be posi- 
tive definite on W[i.e., 7(u, u)~>0 equality holding iff u=0 ,  V u ~  W] 
is KerL* = (0} 

What can we say about 7 without assuming KerL*={0}?  Quite 
generally any data (+, 71) E ~ can be written as 
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where '02 E KerL*  and '01E(Ker L*) • Since (q~, '0) is a da tum and (0, '02) is 
a da tum (~b,'0~) is also a datum, i.e., it satisfies the constraint  equation. 
Further,  as we saw earlier, (KerL*)  • = I m L .  Hence we conclude that 
(~b,'01) is equivalent (by a suitable choice of gauge) to data of the 
form (4,0) .  Hence the (gauge) equivalence class [(~b,'0)] containing the 
da tum (~b, '0)E r can be written as 

[(+,'0)] : [(~,0)] + [(0,'0~)] 

Denote  by W I the (vector) space of [(q~,0)] and by W 2 the (vector) space of  
[(0, "02)]. Clearly for u I ~ W l, u 2 ~  W 2, 7(u~, v I) is positive definite, y (u  2, v2) 
is negative definite, and 7(u l, v2 )=0 .  To summarize, if K e r L * 4 :  {0} then 
(W,~,) can still be canonically decomposed (with respect to Z) into two 
or thogonal  subspaces: W = Wl~ W 2 such that 7 is positive (negative) definite 

on w,(w2). 

3. Q U A N T U M  T H E O R Y  

We shall formulate the quan tum theory in an algebraic f ramework in 
order  to bring out  certain features that are not manifest  in other ap- 
proaches,  e.g., functional methods.  Specifically, our main concern will be to 
construct  and examine the algebra of quan tum operators rather than to 
s tudy the representat ion of the algebra on a Hilbert space of states. It turns 
out  that even at the level of  quan tum algebra, a possible role of the 
space-time is exposed. 

To obtain  the algebra of operators we shall adopt  an approach  similar 
to that developed by Ashtekar  and Magnon  (1975) and others (Kay, 1977; 
Moreno,  1977; Magnon-Ashtekar ,  1978) for scalar fields in curved space- 
time. As in the case of the scalar field an abstract quan tum algebra can be 
constructred from information about  the classical (c-number)  field. By a 
classical Fermi field we shall mean a (c-number)  spinor field (with ap- 
propriate  index structure) satisfying a field equation. The Dirac, neutrino, 
and sp in -3 /2  fields are examples. In these cases there is available a 
preferred inner product  ~ on the (vector) space of solutions V, inherited 
f rom a local conserved current associated with the field equation. Then the 
Clifford algebra over (V, 7)8 provides a natural way to obtain an (abstract) 

~A Clifford algebra over ( V, 7 ) is defined as follows. Let ~? denote the tensor algebra generated 
by V: if= ~ V  | A typical element A of A is a string with only a finite number of nonzero 
entries: A =(a, a", a "h ..... 0,0... ), where a U -b with K indices is the Kth-rank tensor over V. 
Sums and products of these strings are defined in the obvious way. Next consider elements of 
the form C= (y(t, t'),0, t afh + t bi~,0,0 .... ). Let I denote the subalgebra generated by such 
elements, i.e., elements of I are sums of products of elements in • containing at least one 
factor of the type C. I is in fact an ideal. The quotient algebra A / I  is called the Clifford 
algebra over ( V, y ). 
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algebra of quantum operators. In the following section we shall display this 
construction (in somewhat more familiar form) for the spin-3/2 field. 

We mention (but shall not explicitly show) that a Fock representation 
of the algebra can be obtained in a manner similar to the Bose cases. [For 
the construction of the Fock space for the Dirac field, for example, see 
Wald (1979).] 

The Algebra of Spin-3/2 Field Operators. Let _F4.Bc(X) denote the q 
number of "operator"-valued distribution satisfying the field equation 

V AA'F_B,eA = 0  (17) 

The conjugate operator will be denoted by _ F* AA'B'- Next fix a Cauchy 
hypersurface, Z, and consider the space of smooth spinor test functions 
~-k-=((+(~c),~A)} which are square integrable on Z (in ( , )  norm) and 
define "smeared" field operators F(u)  for all u ~ "~ by 

F(~):=y(~,_F)= : r,r,,.~c)+r ,_~+:1 j~t  ~" "__(ABC) 3'1 J_AJ dE (18) 

where (F(ABC), f,4) is the " 3 +  1" decomposition of _FA,BC relative to Y. and 
u =(+, '0) .  [Notice that the elements of '.3~ are not required to satisfy the 
constraint equation (9.3').] Denote by e? the free (*) algebra generated by _F 
(and 1). Next obtain an algebra ~ C ff of field operators as follows. 
Whenever u and v are square integrable data, impose on _F(u) and F(v)  the 
anticommutation relations 

[F(u t, 
[_F(a), (19) 

The relations (19) are preserved under deformations of Y~ in the following 
sense: If the data u and v evolve to fi and 6 on a different Cauchy slice Z 
then F(fi) and _F(6) satisfy (19) on Z by virtue of the fact y(u, v)=~,(fi, 6). 

By way of motivation for the anticommutation relations (19) we remark 
that for the Dirac field the anticommutation relations are precisely of the 
form given in (19), where the ~, product of two Dirac fields u=(~  A, ~A') and 
v = ( U ,  ~A') is given by 7(u, v ) =  f v(~Athm -k-~At~A)do. 

The algebra 9~, as it stands, is too "large" in the sense that there is 
gauge freedom in the field operators. 9 The gauge transformations are 

9We note that starting with a larger algebra ~I is reminiscent of the situation in the Maxwell 
theory where one imposes commutation relations between all vector potentials and then selects 
out the physical subalgebra by the Gupta-Bleuler procedure (see, for example, Thirring, 
1958). 
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expressed as automorphisms of the algebra 92 generated by 

_FA,Bc --, _FA,BC + ( V 2  ̀)A'BC ~ (20) 

where (~7 2`)A,BC is a pure gauge c-number field, i.e., the datum correspond- 
ing to this field is an element of % in this section. (The notation ~7 2, is a 
reminder that data in % come from the field VA'(B2`C), 2`C a neutrino field 
of compact support on ~.) a x is an automorphism because the anticommu- 
tation relations (19) are preserved under the transformations (20) (as can be 
easily checked). We write the action of the automorphism a x on the field 
operators F(u)  as 

v2`)  (21) 

The gauge-invariant subalgebra 92 0 C 92 is obtained as the fixed points of the 
gauge automorphisms: 

920 = {A: A E92, a x o A = A ,  VX} (22) 

We shall call 92 o the quantum spin-3/2 algebra. We shall shortly see that 
enlarging the gauge automorphisms to include V 2  ̀E?0 (rather than %) does 
not affect 92 0. 

To gain some insight into the structure of the algebra we show that 92o 
is generated by field operators of the type F(u), where u is not an arbitrary 
spinor test function on Z but is in fact a datum for the classical field 
equation. It is clear that every datum u gives a field operator _F(u) in 92o 
since under a gauge transformation 

~xo r ( u )  = r ( u )  +V(u,  V 2`)a 

and T(u, x7 2`)=0 when u is a datum. (See Section 2.4.) We now show that 
every generator of 92o comes from some datum. First observe that with 
every u = (q:, 71) E ~ we can associate a pair fi = (+, - 71) E 9s so that 

vve  (23) 

where <,> is the positive definite norm defined in Section 2.3. Next, if 
_F(~) E92 0, then ax o_F(fi)=_F(fi) Va x and so from (21) T(fi, V 2`)=0 V~7 2,E 
%. From (23) then (u, V 2`)= 0 VV 2  ̀E %. The datum is then of the form 

( t(AA'~T BIA'I2`c),t" V XC ) 
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where the first entry uses 
obtained from the " 3 +  1" 
Appendix A). Hence 

( u ,  v 2`) = [~ ' (A 'C)*[  G B h C  - - -  
.' E [ 

Integrating by parts 

the definition of DAB2  ̀c and 
decomposition of the neutrino 

_2 At[ +3 ~ [-- DAM2`M---- 

~ A BC D 2̀D] 

2~- 2̀  ̀ dE 

Sen 

the second is 
equation (see 

(u, ~7 2̀  )= fE(- l)[ DAS~b(Asc) + ~2 ABDC~(ABD) 

+ 3 DCM~IM 2~/-2 ~c dE (24) 

Demanding (u, ~7 2`) =0 ,  V2` then implies [from (24)] 

?r ABDC b(ABm 2 ( q'r ) D'4"+(A,c, +-~ +-~ DCM~ M 2r 0 c =0  (25) 

Comparing (25) with the constraint equation (9.3') we find that if u satisfies 
(25) then f i = ( G  -77) satisfies the constraint equation. That is, fi is a datum! 

We have shown that 7(fi, V 2̀  ) = (u, V 2`) = 0 V V 2, E % = 5 is a datum. 
Hence every generator F(fi) of 920 comes from a datum t/. Moreover, 
enlarging the gauge data to include V 2  ̀~ ~o (instead of %) does not affect 
92 o (because ~o is the closure of % in ( , ) ) .  Furthermore, from the discussion 
in Section 2 it follows that _F(fi) =7 (a ,  _F)=0~[_F(5), _F(v)]=0 Vv,=,y(~, v) 
= 0 Vv = fi is "pure gauge," i.e., fi ~ ?0- Thus to each element u ~ w = ~'/?o one 
can uniquely associate a field operator _F(u). Then 92 o is indeed isomorphic 
to the Clifford algebra over (w, 7). 8 

The positivity of the anticommutator of field operators clearly depends 
on the positivity of y(,). In particular, if KerL*va(0)  (see Section 2.5) 
then W=WI~W 2 and [_F(ul),_F*(ul)]+/>0, [_F(ul),_F*(u2)] + = 0  and 
[_F(u2),_F*(uz)]+ ~<0 for utEW I and u2EW 2. The indefiniteness of the 
anticommutator in this instance raises questions about the physical interpre- 
tation of the quantum theory. We defer the discussion of this issue till 
Section 5. 
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TO complete the analysis of the structure of the quantum algebra, we 
note that there are no elements in g0 except zero which anticommutes with 
all generators of the algebra. This fact follows somewhat trivially from the 
way the field operators _F(u) and the anticommutator are defined and has 
nothing to do with whether or not 7 is positive definite. To see this, fix a 
datum u and the corresponding field operator F(u). Then [ _F(u), _F*( v )] = 0.11 
for all v implies [from (19)] that 7(u, v ) = 0  for all v; hence 7(u, _F)=0; i.e., 
F(u)=0. 

We conclude this section by indicating the essential problem one 
encounters with the alternative spin-3/2 theory described by equation (5') 
and with higher spin fields. Equation (5') can be written in the form 

A?q'B'AC = -- �89 V M'~%M,MC = ~C 

v c , cX  c = ' I ' c ,B , c~q7  cB 

which shows that the field qJA'BC can be regarded as a mixture of "spin-3/2" 
and "sp in- I /2"  pieces. Note that in Einstein spaces, ?~c is in fact a neutrino 
field. Further there is a gauge freedom in the equations [as for equation (5)] 
which, in Einstein spaces, is again generated by a neutrino field. While no 
restriction on the space-time is required if we consider the field equation 
(5'), one has now a theory with several fields. It is not possible to isolate a 
pure spin-3/2 contribution from the field. One might still expect to for- 
mulate a physically sensible quantum theory. The quantum algebra is 
specified by the inner product y(,), which, in this case, is also given by (12). 
It turns out that the data (~P~ABC), ~A) for the field described by equation (5') 
is not constrained: one can choose it arbitrarily. Thus the inner product 
y( u, U)= fZ[Lk~AeC~t q'~ABC) - �89 dY~ is indefinite. The anticommutator 
of the field operators is therefore indefinite and the quantum states of the 
theory would have to be elements of a Hilbert space with an indefinite 
metric. The physical interpretation of such a quantum theory is then not 
clear. 

Similar problems plague the higher spin fields. The general fermion 
spin-s field equation consistent in arbitrary spacetimes (and derivable from 
a Lagrangian) is 

V tA,A~B,...C')AB...C -----0 

where q'tB .... C')~AB.-.C) is the spin-s field, having 2s indices, m of which are 
primed and m +  1 unprimed (i.e., 2m+ 1 =2s )  and symmetric in both sets of 
indices. Note that equation (5') is a special case of this equation. The data 
for this field are again unconstrained and the inner product ~,(,) on the data 
is indefinite. 



16 Sen 

4. THE ROLE OF SPACE-TIME 

In the previous section we saw that 7(,) gives the anticommutator of 
the quantum operators. So the anticommutator is positive if y( ,)  is, and by 
the results of Section 2.5, this is ensured by the condition K e r L * =  {0}. 
Here we discuss the restrictions on the choice of space-times implied by this 
requirement. 

One faces some technical difficulties in working with the condition 
Ker L* = {0}. One would like to interpret the condition to mean 

(s  XAEC ~, fjtA+X.4dE<oe~XA=O_ 

(i) 

That is, there are no square integrable solutions of the differential equa- 
tion (s where I2" is the linear differential operator DABe B c -  
(~r/2V~)SA c. Now, since KerL* may well contain elements that are not 
smooth, it is not a priori obvious that the alternate statement (i) is 
equivalent to KerL* = {0}. One must examine the properties of the operator 
/2* to establish the equivalence of the two statements. In this instance, it is 
the ellipticity of/2* that justifies (i). Briefly, the argument proceeds in two 
steps. First, one shows that KerL* consists of distribution solutions (de- 
fined below) of (/2*?')A =0. This is done as follows. From the definition of 
distributions (see, for example, Reed and Simon, 1972) it is easy to check 
that for X A ~ H, the product @, 7}) = fz ?tA + 71A dE V'q A C H defines a distri- 
bution X: X(~) :=(X,  77). Now _X is said to be a distributional solution (or 
weak solution) of (/2*~)A=0 if the distribution (/2*X) defined by 
(/2*X)(n):=X(Ln) satisfies (/2*X)(~)=0 V n ~ H .  Thus we see from 
(s L ~ ) = 0  that every ~, in KerL* gives a weak solution of 
(L*-q)A =0.  In the second step, we establish that every weak solution is in 
fact smooth. One checks that I2" is an elliptic differential operator with C ~ 
coefficients (since ~r is smooth). [For the definition of elliptic differential 
operators see Atiyah and Singer (1963).] Then from the known result 
(Peetre, 1961) that every elliptic operator with C ~ coefficients is hypoel- 
liptic, it is immediate that every weak solution of (/2*~)A = 0  is smooth. [A 
differential operator/2* is said to be hypoelliptic if whenever f ~  C~ (a  
is an open set in E) and u is a weak solution of s  ~2, u must be C ~ 
on f~. For details see, for, example, Folland (1976), Reed and Simon (1972).] 
Thus one may identify KerL* with solutions of (/2*~)A =0. 

In the following analysis we shall frequently integrate by parts and 
neglect contributions from the boundary terms. This imposes a restriction 
on the class of space-times that we can consider. The problem of boundary 
terms does not arise in the case of spatially closed space-times. Of the open 
space-times, we expect at least the asymptotically flat space-times to give no 
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bounda ry  contr ibut ions.  This expectat ion is made  plausible by observing 
that in Minkowski  space, the leading term in the mult ipole  expansion of 
solutions of  ( s  (that vanish at infinity) is of  O(1/r2))  ~ The 
relevant  bounda ry  terms that we encounter  are then zero. Hencefcgth,  we 
shall consider spatial ly closed or asymptot ica l ly  flat space-times.  

As before, consider a space- t ime (M,  g~h) whose Ricci curvature  R ~  
satisfies R~h=Ag,~ b, A = c o n s t .  Let Z be a Cauchy slice with extrinsic 
curvature  %h and metric  [of signature ( -  - - ) ]  h,b.  F rom the initial value 
formula t ion  of general relativity (see, for example,  Geroch,  1972) we know 
that  the extrinsic curvature  %h is constrained by the following equations:  

--6~--TtabqTab +7/.2 = 2 A  (26.1) 

D,(~r '~h - - ~ r h " b ) = 0  (26.2) 

where ~ is the scalar curvature  of the three-manifold  E. Then condit ions 
(26.1) and (26.2) give us the following lemma.  

Lemma 2. (i) For  A > 0 ,  (s =DAB xB -- (~'/2r - - - 0 ~ A  = 0 ,  
i.e., K e r L *  = {0} 

(ii) For  A = 0 ,  (s =O~DAB~C+(Tr/V/2) ABCD~D=O for 

Proof. ~ ~ 

( ( s 1 6 3  = DAoX 8 - - f - ~ X A ,  DAcX c - - ~  XA 

= (DABXB, DS?tc)  + ~(TrX A, ~rXA) 
I 

+ 7 - ~  [ ( ~rX A, D,4CXc) + ( DABX B, r:X A> ] 

= -- (~ 'B'  DsADAC)~c) + I 2 ~(XA,= XA) 
+ I__L_ 

2 ~ -  [ ( r r ~ a '  D S X c >  + <DAeX"'  wXA>] 

DMN 6~ 

1 (27) 

I~ Minkowski space, if F I and F 2 are the components of a neutrino field in a basis, then the 
solutions of DABX B =0 (choosing a ~r =0 slice) are given by F 1 =(l/r)R+ i/2(r)S+ 1/2(0, q~), 
F 2 =(1/r )R_ t/2(r)S_ i/2(0, dp) where S• i/2 are of the form ~Yt,,(O, q~)=s&,.(O)e ''~' (spin 
s = -+ 1/2 weighted spherical harmonics) and R _ 1/2 = AI rt+ t/2 + Btr-(t+ 1/2~ 

R+l/2=(1/r)R_l/2, 1>~1/2, AtandBt=const 

IIWe use the notation (~,A,T1A): = JzM+~lAdE etc. 
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To obtain the first term in the second step we have used the result (A.20), 
i.e., DAB is skew symmetric in the norm ( , ) .  The first term in (27) is 
obtained by simplifying DffDBc using (A.29) and the last term is obtained 
by simple integration by parts. Next using (26.1) to write 

-('~ +rr 2 =rr~b%h +2A 

one obtains 

1 (XB, DMNDMN~B ) q- 1 (( s ).4, ( L*X ).4) = ~ ~ (X o, ~"%hX,) 

a (Xo, X•)-  1 (Xa, (Dd%)XA) (28) +7 

Using the second constraint equation (26.2) to replace DBATr by DcoTrC~d 4 
in the last term in (28) and integrating by parts, 

1 1 
(( s )A, ( [,*h )A) = ~ (DMNXB, DMNXB) + g (%bXA ' %~,hA) 

1 A 
A (XA,Xa)__2_~[(DMNXB,WMNB XA)+<WMN AXA DMNXB) ] +--s 

= ~e vab~r it is easy to check Since wABCoWABCE ~- ED ab 

( %h ~ B, %b x B ) = 2( %*UBAX A, 7rMNB Ax.,~ ) 

Then 

1 1 
(( [,*h ),4, (/~*X )A ) = ~ < DMNX S, DMNXS) + -~ (r r 

1 
2 ~  [(DMNXO'WMNBaXA) 

-~- (~MNBA~kA, DMN~kB) ] + A (}kA ' }k,i) 

_ 1 "IrMNBA hA ) 
+ , 

X D M N ~ k B + - - ~  q-Z(~..,.I,t~A) (29) 
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F r o m  (29) if A > 0 ,  then since each term on the right is posi t ive  ( s  = 0  

~ ( ( s 1 6 3  This comple tes  the first 
par t  of the lemma.  If  A = 0 ,  again (29) impl ies  (s 
(~rMNB A/r = 0 .  This  converse  is trivial. 

Lemma 3. The only vacuum global ly  hyperbo l i c  closed or asymp-  
tot ical ly  flat  space- t ime admi t t ing  a ~ r=cons t  Cauchy  slice for 
which K e r L * ~ { 0 }  is flat. 

Proof. When  ~r=const ,  from (28) (set t ing A = 0  and DABrr=O) 

( ( s  (s  = �89 DMNXB, DMNXB) + l (~abXB' 'N'abXB) 

( s )A=O=DMNX B = 0  (30.1)  

%bXB = 0  (30.2) 

F r o m  (30.1), X B E K e r L *  must  be a paral le l  spinor .  Since Y. is three 
d imens iona l ,  existence of  a nonzero  paral le l  sp inor  implies  Y. is f l a t )  2 
Fur ther ,  if X B is nonzero,  (30.2) implies  % b = 0 .  Hence  K e r L * r  occurs  
only if there  exists a 7 r=cons t  Cauchy  slice with a flat  metr ic  h~0 and  
%0 = 0 .  Since the space- t ime is a solut ion of Eins te in ' s  equa t ion  R ,0  = 0 ,  
(ho0 flat, %0 = 0) const i tu tes  ini t ial  da t a  for flat  space, i.e., the space- t ime is 
flat. 

L e m m a s  2 and  3 conta in  the centra l  results concern ing  some space- t imes  
that  admi t  a posi t ive  def ini te  no rm ~,(,). In the proofs  of  the l emmas  the 
a s sumpt ion  that  the b o u n d a r y  terms (in the var ious  in tegra t ions  by  par ts )  
vanish  is crucial .  Therefore  our  results  app ly  to only those mani fo lds  Y~ 
which guaran tee  that  the b o u n d a r y  terms vanish. Such mani fo lds  will be 
said to have "negl igible  boundar ies . "  Closed and,  as we have indicated,  
a sympto t i ca l l y  flat  Cauchy  hypersur faces  have negligible boundar ies .  One 
may  well expect  our  results to fail when 2; has a b o u n d a r y  or  is incomplete ,  t3 

12Any SU(2) spinor X A C( V, eAB) at pEN determined three orthogonal vectors (at p): 

UC4S~ =xA ks +XA +XB + ' v~A s) =XAXB --XA +XB + ' W~Am =XA +XS +X~+XA 

Thus if X A is a parallel spinor field on 5:, then one has a parallel frame on E, implying E is 
flat. Alternatively, one shows that the integrability condition for DAoX c =0 requires that the 
Ricci curvature of E vanishes, which implies (since E is three dimensional) that the Riemann 
curvature vanishes, i.e., E is flat. 

13In general, it is hard to characterize spaces with negligible boundary. One might begin with 
the observation that the boundary term is of the form I=fxD,#~'dY and its vanishing 
depends on the properties of V" and on 53. To find conditions such that I=0, the following 
result due to Gaffney (1954) might be useful: On an orientable, complete, Riemannian 
manifold with C 2 Riemann tensor, if V a is a C I vector field with the property that both II VII 
and D~ V a are integrable (i.e., f:~ II VII d E < oo etc.), then f .D.  V" d E = O. There seems to be 
no obvious way in which this result can be applied to our situation. 
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From part (i) of Lemma 2, all space-times which are solutions of 
R~h =Agal , with A positive, demand KerL* = (0} and hence ),(,) is positive 
definite in such spaces. Thus for example, a consistent theory of spin-3/2 
particles exists in de Sitter space. Note that we do not have any results for 
the A < 0  case. However, if one considers asymptotically simple space-times 
in the sense of Penrose, such space-times (A < 0) are asymptotically anti-de 
Sitter (Penrose, 1965a) which have the interesting property that there are no 
Cauchy surfaces in the space. Standard quantization of fields, such as the 
one envisaged here, is meaningless in this case. 

When A = 0 ,  Lemma 3 gives a concrete result, but only for the 
instances when the space-time admits a ~r--const Cauchy surface. For 
example, Kerr and Schwarzschild space-times admit such a Cauchy slice; so 
by Lernma 3, Ker L* = (0} implying ~,(,) is positive definite in these cases. It 
is remarkable that for KerL*4=0 the space-time must be flat. However, 
these flat space-times cannot include Minkowski space-time since there 
?~A ~ KerL* are constant spinors and would not be square integrable unless 
X A = 0. Rather the relevant flat space-times are those which are obtained by 
suitable identification of Minkowski space so that the resulting space-time is 
spatially compact. Then the constant spinors X A E KerL* would indeed be 
square integrable. Note that one cannot allow arbitrary identifications of 
Minkowski space because the spinors at the points being identified must be 
identified as well. This severely limits the number of permissible identifica- 
tions of Minkowski space that can be made. 14 Without any assumption 
about the existence of ~r =cons t  slices, we are left to determine, by part (ii) 
of Lemma 2, the space of solutions of 

DABXc + ( cr/~[-2 )ABCDXD=o (31) 

Under what situations are there solutions? It turns out (Sen, 1980) that 
space-times (with "negligible boundary")  that admit nonzero solutions of 
(31) must be algebraically special of Petrov type III [hence including the 
special cases type N or 0 (flat)]. The type-III or type-N vacuum solutions 
represent gravitational waves and it is not clear that such space-times can be 
asymptotically (spatially) flat or that suitable identifications of the space- 
time can be made to obtain a spatially closed solution. The simplest type-N 
solution, the plane wave (see, for example, Pirani, 1964), appears to be 
neither asymptotically flat nor closable (unless flat). Furthermore, Penrose 
(1965b) has shown that the plane wave solutions do not admit any Cauchy 

14Explicit examples can be obtained as cross products of flat, compact, Riemannian 3-geometries 
(see Nowacki, 1934) with time. The 3-geometries that admit constant spinors are the 
six-parameter family of metrically distinct manifolds with topology S I • S I • S 1. 
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surface and are therefore uninteresting for our purposes. 15 One may expect 
this situation to persist even for the general type-N or type-III space-times. 

The entire analysis given above focuses on the existence of solutions of 
(s = 0. DO these solutions have any physical significance? We observe 
that neutrino equation v c'c?~c,=O written in " 3 + 1 "  form relative to a 
Cauchy slice Z is [see (A.33)] 

- ( , -  

The kernel of s therefore corresponds to those solutions of the neutrino 
equation for which t. X7 k~ =0.  In a sense these solutions are "zero modes" 
of the neutrino equation relative to the particular Cauchy slice Z. Of course, 
they need not be "zero modes" relative to some other slice. Strictly speaking 
the notion of "zero modes" is well defined only when we have a timelike 
Killing field on the space-time. In static space-times, t. ~7 is indeed the 
"true" time derivative of the field. In that case KerL* gives the "true" zero 
modes of the neutrino equation. Note that we can conclude that there are no 
normalizable "zero modes" of the neutrino equation in Schwarzschild 
space-time (since it is asymptotically flat, globally hyperbolic, and admits a 
7r=0 slice). This fact can be indeed verified by direct calculation (using, for 
example, the methods of Chandrasekhar, 1976). 

In summary, restricting attention to spatially closed or asymptotically 
flat space-times (the latter of which we can plausibly assume to have 
negligible boundary) we have two distinct results. First, ~,(,) is positive 
definite in all space-times satisfying R~b =Ag~h with A>0 .  Second, ),(,) is 
positive definite in all vacuum globally hyperbolic space-times except for 
those of Petrov type III, N, or 0 (flat). In particular, if the vacuum 
space-time admits a ~ = const Cauchy slice, then 7(,)  is indefinite only if the 
space-time is flat. 

5. CONCLUSION 

Within the restriction to globally hyperbolic Einstein space-times, we 
have formulated a quantum theory of the free massless spin-3/2 field by 
specifying the algebra of quantum operators. Although the consideration of 
a free field is somewhat simplistic, the foregoing analysis of the spin-3/2 
algebra brings to light some interesting features. 

Unlike the algebra of the quantum electromagnetic field, the spin-3/2 
algebra ~ 0 has no center. (By a center, in the case of fermions, we refer to a 
"graded" center generated by elements that anticommute with every gener- 

15Of course, smaller regions of the plane wave solutions do have a Cauchy surface E, but then 
E is incomplete. 
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ator of ~ 0-) Sorkin's study of the electromagnetic field (Sorkin, 1979) shows 
that the topology of the space-time dictates whether or not the algebra has a 
nontrivial center. In the spin-3/2 case, however, one cannot hope to fred a 
similar role of the space-time because of the absence of a center. (The Dirac 
or the neutrino field algebra also has no center.) In fact, it seems unlikely 
that central elements of an algebra of a Fermi field would reflect the 
influence of space-time topology. Presumably the central anticommuting 
"charges" would then have to be expressed as a flux integral of the field 
over some closed surface in the space-time. But, this is not possible because 
of the index structure of a Fermi field. 

An alternative way to look for analogs of electromagnetic charge 
operators would be the following. Recall that since ?I 0 is a Clifford algebra 
it can be regarded as a direct sum of two vector spaces 9~ ~ and ?1 o called, 
respectively, the even and odd parts of ~0- 9-l~-(~o) contains elements 
which are sums of products of even (odd) number of generators of ~10.9,l ~- 
is in fact a subalgebra of ~0 (but ~ o is not). Now the physical observables 
of the theory belong to ?I~- and so one might entertain the idea that 
elements of 9~- which commute with every element of ~ - ,  if they exist, are 
the proper counterparts of the electromagnetic charge operators. However, 
it turns out that the existence of such elements is tied to the structure of ~ 0 
as a Clifford algebra in a way which can have little to do with the 
underlying space-time. It is known, for example, that when ~ o is a Clifford 
algebra over a finite even-dimensional vector space W (over C), then the 

+ is two dimensional spanned by the identity and an element center of ~0 
which anticommutes with every element of ~ o  (Chevalley, 1954). In our 
case, however, ~l 0 is infinite dimensional and the center of 9~ ~- is trivial. 

A quite independent issue that arises in the case of Fermi fields (in 
contrast with Bose cases) at the algebraic level is the positivity of the 
anticommutation relations. In the spin-3/2 theory, the apparent indefinite- 
ness of y( , )  raises the possibility of an indefinite anticommutator. The 
space-time, in admitting neutrino "zero modes" or not, dictates our ability 
to "gauge away" the term contributing to the indefiniteness of y(,).  Thus it 
is here that the structure of space-time is of relevance. It is remarkable that 
among spatially closed or asymptotically flat space-times, we find only a 
small class that admit neutrino "zero modes." Thus 3'(,) is positive in almost 
all Einstein space-times that may be of physical interest (e.g., vacuum 
asymptotically flat space-times). One must be cautioned that we have by no 
means exhausted the list of space-times that admit neutrino "zero modes." 
By making specific assumptions-- that  boundary terms are absent, that the 
space-time satisfies Rob = Ag~b-- the  scope of our method is quite re- 
stricted. Further, our method fails to suggest if Einstein spaces with A < 0  
admit neutrino "zero modes." A more general method of analysis which 
would incorporate the role of boundary terms seems desirable. 
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There are two attitudes one could adopt towards an indefinite Y(,) in 
the theory. The positivity of the ant icommutator  is often imposed as a 
physical requirement because one can then obtain a meaningful particle 
number representation of the algebra and a probabilistic interpretation of 
transition amplitudes between two states. If we adhere to this requirement, 
then one must restrict attention to only those space-times which admit a 
positive "r ). 

An alternative stand would be to consider all possible space-times. 
Then we admit an indefinite ant icommutator  and must suitably interpret its 
consequences. In the spin-3/2 theory, the operators that have a negative 
ant icommutator  are those associated with the subspace W 2 of the space of 
data (see the end of Section 2.5). In the flat space examples, W 2 is two 
dimensional and its elements are in fact static or "zero-frequency" classical 
solutions of the spin-3/2  field equation. Therefore, the operators associated 
with these "zero modes" cannot be decomposed into creation and annihila- 
tion parts. In fact no Fock representation of the algebra exists. One would 
have to consider a new representation of the algebra on an indefinite metric 
Hilbert space. What significance can one assign to these operators? We have 
not at tempted to answer this question here. Further analysis, particularly of 
the representation of the algebra, is required. Moreover, to gain some 
insight, it will be useful to have examples of nonflat vacuum space times 
admitting neutrino "zero modes." 

An interesting feature of the theory that we have not dealt with and 
that could depend on the structure of the space-time is the existence of 
spin-3/2  "zero mode" solutions. Their role in the quantum theory is not tied 
to the issue of positivity of y(,).  Indeed, even if T(,) were positive, such 
"zero mode" solutions would still contribute to the quantum theory in the 
manner described by Jackiw and Rebbi (1976) in the context of Dirac field 
in a background field. In connection with this feature, we note that the 
space-times for which KerL*v~{0} are precisely those in which one can 
expect new quantum behavior of the neutrino field. Thus our analysis in 
Section 4 is also germane to this issue. 

In summary, the spin-3/2 theory that we have considered provides a 
simple model of a quantum Fermi field which displays some new behavior 
in its "interaction" with the underlying space-time. The model and the 
techniques used to analyze it suggest how one might investigate higher spin 
Fermi fields with more complicated gauge behavior. Perhaps some features 
of this theory may be of value to supergravity or supersymmetry theories. 
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A P P E N D I X  A: "3 + 1" D E C O M P O S I T I O N  OF S P I N O R  
E Q U A T I O N S  

Let M be a four-dimensional manifold with a smooth metric gob of 
signature ( +  - - - ) .  Assume M admits a time function t ,  a smooth scalar 
field on M whose gradient is everywhere timelike. Then the one-parameter  
family of surfaces E,, defined by t=cons t ,  are spacelike, three-dimensional 
surfaces. Let t ~ denote the unit normal ( t ~  = 1) to this family of surfaces 
and let ~o = N t  o be the connecting vector field from each surface to nearby 
surfaces. That  is, ~~  whence t o = N x T a t .  N is called the lapse 
function. 

In this appendix we shall define spinor fields on a fixed hypersurface E t 
and show how to obtain an "initial" value formulation of spinor field 
equations. In other words, the data for the spinor field are specified on the 
hypersurface Y.,, possibly subject to some constraint equations, and the 
evolution equations are given. For a parallel exposition, see Sommers 
(1980). 

To fix notation, we summarize the relevant geometric structure on a 
fixed hypersurface Z, which we shall use in the main discussion. For details, 
see Geroch (1972). A tensor field T . . . .  h~... d on M will be called s p a t i a l  

(relative to Et) if its contraction with t ~ or t o vanishes, i.e., 

t ~ T ~  h c  . . .d = O  . . . . .  t b T  o. . .h . . .d = O  

tCT  . . . .  b c = 0 ,  t a T  o. ..b = 0  
�9 . . d  . . . .  r . . . .  d 

There are two spatial tensors of particular interest. The first is the tensor 
field on Zt 

hob: = g o b - - t o t b  (A.1) 

which is the induced metric [signature ( - - - ) ]  on Z,. The contravariant 
metric is h ~ =gab _ t o t  b. (We raise and lower indices with gob; for spatial 
tensors, however, raising and lowering with hob also gives the same result.) 
The tensor field h o b = h ~ , ~ g ' b = r o b - - t , t  b may be viewed as a projection 
tensor (hobhb  c =ho  C) which projects out the s p a t i a l  part of any vector or 
covector field on M. Thus, for example 

qrab = h a m h b  n ~ mtn (A.2) 
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is a spatial tensor field on Z,. Here V o is the covariant derivative operator 
defined by the metric gab. ~rab is the second tensor field of interest; it is the 
extrinsic curvature of the hypersurface E I. Using t a --N V at, it is easy to 
show that ~rab =~rha, i.e., symmetric. 

On Z l, there is a unique torsion-free derivative operator, denoted by 
D a, defined by the spatial metric hab. The action of D a on any spatial tensor 
field T ~ d  may be obtained from the action of V by the following e ' ' ' f  a 
prescription 

D a T  c d  e . " . . . .  " "  . (A.3) �9 .f : h a b h m  c . h n d h f  " h f ~ Z b  T m  p . - q  

In particular, Dahbc =0  

A.1. Spinor Fields on ~:t. Fix a hypersurface Yr- Assign to each point p 
on Y'l a complex two-dimensional vector space V equipped with a nondegen- 
erate symplectic form (skew 2-form). Elements of V will be denoted by ~A 
and the symplectic form by eAB. T h e  complex conjugate vector space 
associated with V will be denoted by V, its elements by ~A' and the 
symplectic form by eA,B,. (V is defined by identifying with V as a set such 
that a~ A :  ff~A', i.e., if ~A~ V is identified as ~A'~ ~, then the element 
a~ A ~ V, a ~ C  is to be identified with ff~A'~ ~.) The group that preserves 
the structure on V is SL(2,C) and ~A will be called a SL(2,C) spinor at 
P~Y'I; letting p vary over E t we obtain a spinor field on E I. It is clear that 
given a SL(2,C) spinor field on M, its restriction to Y'l is a SL(2,C) spinor 
field on Z t. 

To relate tensors to spinors on M, one must fix a metric-preserving 
isomorphism between the four-dimensional real vector space W :  (~AA' ~ V 

| ~: ~AA':~A',4, metric=eA~eA,~,} (constructed from the spinor spaces V 
and Vat  a point p)  and the tangent space Tp(M) with metric gab" We shall 
assume that such an isomorphism has been fixed. 

In order to relate spinor fields on E l to the geometry of Yr, we need an 
additional structure on V which reduces the structure group SL(2,C) to 
SU(2) (see also Friedman and Sorkin, 1980). This additional structure on V 
is a distinguished positive definite Hermitian inner product which we denote 
by G(,): 

and 

(i) 
(~) 

(i~) 

G: V• V ~ C  

G( ~, i ~ l ) = i G (  ~, 7}) 

G(~,~)~>0, = 0  iff ~=0 g;, n E  v 
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where the overbar denotes complex conjugation, (i) and (ii) imply that G is 
antilinear in its first entry: G ( i ( , ~ ) = - i G ( ( ,  ~). Consequently, G can be 
regarded as a bilinear map from V• V to C. We introduce the notation 

GxB : V• V-, C 

(U', (A .4) 

In this notation for the Hermitian metric, Hermiticity appears as GA, B = (~BA'" 
Since the metric is positive definite, its inverse exists, which we denote by 
G A'B such that 

G A B'GB,c = 8c A (A.5) 

where 6c A is the usual Kronecker delta. 
We note that there are three complex vector spaces associated with V: 

The complex conjugate V whose elements are written as ~A', the dual V* 
whose elements are written as (A, and the complex conjugate dual V* whose 
elements are written as ~A" Thus, G w c E V * |  and G W C E v |  are 
tensors over V, V, V*, V*. If a symplectic structure ~AB is fixed on V, then the 
e~B provides an isomorphism between V and V*: 

e~B: V ~  V* 

(A.6) 

Likewise the inverse eAB: V* ~ V 

Note that eABeCB =~C A. Thus we can raise and lower indices with eAB 
according to the rule in (A.6). Prime indices are raised and lowered using 
the corresponding symplectic form ~A'B' on V. The introduction of the 
Hermitian metric GA.B on (_V, L~B) provides an isomorphism between V and 
V* (and, by Hermiticity, V*,~ V): 

GA'B: V - , V *  

Note that ((*B) t = - ( B .  To preserve raising and lowering operations with 
tAB and eA, w, we impose the compatibility condition on GAA, 

~ABGAxGBB" = ~A'B" (A.7) 
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The structure group of (V, eAs, GA,A) is SU(2) and elements of (V, e, G) 
are SU(2) spinors. The relation between SU(2) spinors and vectors in real 
three-dimensional Euclidean space emerges as follows. (For details see 
Friedman and Sorkin, 1980.) A spinor V AB will be called real if 

GA,AGB,Y A'B'= V~B 

Consider the real three-dimensional vector space E--{VAB: V AB real and 
V As = v(AB~}. There is a natural inner product on E given by 

h ( u ,  v ) : =  UA%AB Vu ,  v ~  E 

The space (E,  h) is a real three-dimensional Euclidean space. 
We return to the main discussion now. We have considered at each 

point p of Et the space (V, eAB). There is a natural Hermitian inner product 
on (V, tan ). This is seen as follows. At each point of Z t we have the unit 
normal to vector t ~ In spinor notation, t a---t A'A is a Hermitian spinor. 
Since t o ~-tA, A, the condition that tato = 1 translates into 

tA~', - ' ~  '~ (A.8)  "BA" - -  2~ 'B 

Set 

GA,B = f 2  t A,B (A.9) 

To see that G,4,B is indeed positive definite, note that for every ~AE V 
~A'~A ____--i o is a real null vector at p. (We may choose l ~ to be future directed.) 
Then ~A'GA,8~B=C~A'~AtA,A=V~I~ta>~O, = 0  iff 1~ Including this 
preferred metric on (V, e,4B), we have the result that unprimed spinor fields 
T A  Be . . . o  on M restricted to Et are SU(2) spinor fields on Z t- 

On M there are also primed spinor fields, for example S w. By means of 
the isomorphism provided by GA, B between primed and unprimed spinors, 
we may regard primed spinor fields SB' on Z, as the SU(2) spinor fields 
S t s :=v~ tBs~s ,  on Y.,. We define spinor fields on Y., as the set of all 
(unprimed) SU(2) spinor fields; denote this set by S t. Given a spinor field 
T A .... B'A...S c .... O'C...0 on M, we obtain a unique spinor field on Z c via the 
rule 

T M " N A B e . . . Q C . . . O : - = ( - - ~ - 2 t M A , ) . .  . ( - - f 2 t l V R , ) ( V l - 2 t C ' e ) ' ,  " 

. . . .  " ' " "  (A.IO) C ' . . . D ' C . .  " D l ~ t  

In other words, we convert the primed indices to unprimed ones and restrict 
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the resulting spinor field to Zr  Indices on spinor fields on Z t will be raised 
and lowered with eAB" We shall use the following notation for the GA, B inner 
product of SU(2) spinors: 

~Bt'oB: = GA'B~A,rlB (A. 11 ) 

In general for %...B ~ St 

(A.12) 

which is positive definite, 
To express spatial tensors on Z t in terms of SU(2) spinors we note 

that for &==-SAA, and t ~  the corresponding unprimed spinor 
SAS:=~-2tAA'SA,e  is symmetric, i.e., SA~ =S{ A s ) .  (The skew part of SAB is 
eABt~ --0.) Thus, the rule is to replace each index of a spatial tensor by a 
pair of symmetrized spinor indices. If To...b .... d is a spatial tensor of type 
(r, s), then 

Ta...bC...d ~ T(AM)...(BN)(CP)" .(DQ) 

Note that since ( r)~ ) + = --~qA, T~. . " " = ( -  )r+sT. . " 
We end this section by writing the metric hob and the extrinsic 

curvature %b on Z~ in terms of spinor fields on Z t. The spatial metric 
hab = g a b - - t o t b  is written a s  hA,AB, B =EABeA, B, --tA'AtB' B. Define 

.__ A' B' 
hACBD.--2t C t D hAA,BB" (A.13) 

Using (A.8) 

h Acno  = --en(AeC)O (A.14) 

Since tahab = 0 ,  it is easy to show that [also implied by (A.14)] 

hACBD =h(AcXBD) (A.15) 

and since hab = h b ~  

hACBD =hBDAC (A. 16) 

The extrinsic curvature ~r~b--~rA,AB, B corresponds to 

~r AC BO : = 2t  c~'t o n ~  A,AW B (A.17) 
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and, like hab , has the property 

~ ACBD : qT( Ac)(  BD) ='rf( BD)( AC) (A.18) 

From (A.18) eABTrACBD----~rACD A = --TrADe A, which implies 

"II'MA B M = l e A B~fl" (A.19) 

where ~r----~MN MN : rrMM ,MM' : hab~ab ~ trace of extrinsic curvature. 

A.2. Derivative Operator. In this section we introduce a "spatial" 
derivative operator on spmor fields in St which refers only to the intrinsic 
geometry of Y'r In particular, its action on tensors on E t (regarded as spinor 
fields) reduces to (A.3). 

Let ~ A ~ S t  and consider a derivative operator D~ABI: S, - - ,S  t whose 
action on ~A is defined by 

DABXC:=f2t(AA'VB,A,?~C+(TrABCD/(2 )X ~ (A.20) 

where ~TA'A is the spinor form of the torsion-free covariant derivative 
operator ~7~ on M defined by gab" The action of DAB on scalar fields q~ on 
Y~ is 

D A BeO = f 2  t~ AA'VS)A,~, (A .21 ) 

and its action on spinors of higher valence is extended by the Leibniz's rule. 
Thus, for example, 

"ff A BC M "I1"A B D M 
- - E C M  

_-0 _ 1  ~- (~ABcz,--~rABOC) =0 (A.22) 

Thus 

D A B h c D E F  = 0  (A.23) 

It is not hard to show that for any scalar field q, o n  ~"t 

[ DABDco -- DcoDAB ]# ~=0 (A.24) 

i.e., DAB is torsion free. 
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Next we illustrate the action of DAB on spatial tensors. Consider a 
spatial covector Sa; the spinor field on Z, corresponding to S a is SAB 
= r t c , f  Sa) A, ( S a =--SAA, ). We claim 

DcDSA B = 2tcC't BB'Dc'oSB'B (A.25) 

where DA,ASB,B=~DaSb=hZh~"V mS,. [See equation (A.3).] To show this 
write DA,ASB, B =hA,AM'MhB,B N'N • M,MSN,N . Then 

2t c A't DB'D4,A SB'B 

= 2hcAPMh BDQN( t pP'tQQ'Vp,MSQ,N ) 

= 2hcffMh BDQN[t if'X7 W~4 (t QQ's9, u )--(tff'Xep,MTQ O' )So,N] 

= . F [ ( ,  - . . . o ,~  

=DcASBD 

In the third equality we have used a convenient expression 

VABCD = 2[ t~ff' VB)?,tQ,~C] t D) Q" (A.26) 

In the fourth equality, the symmetrizations over PM and QN come from the 
symmetry of the indices in hab. The last equality uses the definition of 

DcASBD. 
To summarize, the derivative operator/).40 defined by (A.20) satisfies 

the Leibniz rule, is linear, commutes with contraction, kills the spatial 
metric, is torsion free, and gives the "proper" action on spatial tensors. It is 
therefore the unique derivative operator on Z, defined by huh. 

The Riemann tensor on Z t defined by the spatial derivative operator D a 
is defined by DtaDblS c = !e~2 "Labcd~'-'d for any spatial covector S a. We would 
like to have an expression for [D~cDBD--DBDDAc]X M in terms of the 
Riemann tensor (in spinor form) for any X M E S,. We state the result: 

[ DAcDBD --DBDDAc]~E-=[eABDM, cDm M +ecDDMcADB)M]~E 

(A.27) 

DM(ADB)MXc = �88189 D (A.28) 
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where @ACBI~: = 2tAA'tB"@'A'CB'D is the spinor form of the Ricci tensor 6A~b 
and @=6A~bh~b is the scalar curvature. Note that ffLACBD =6A{AC){~ m : 
~BDAC and 6AACB c =  �89 Contracting the indices B, C in (A.28), 

DM(A DB)M~B : 167~ ~'A (A.29) 

We end this section with an important property of DAB: 

t 

where 

(DAB~C)t:(2)3/2tAA'tBa'tcC'DA,w~C, 
(A.30) 

To establish this result consider the right-hand side: 

( DAB~C )+ : (2)3/2tAA'IBB'tcC'DA,B,~C, 

=(2)'/2taA'toB'tcC'[~t<aY X7 ,',M~C' + ( ffA', 'C'D'/~ )~D'] 

=4t(AA'to)B'tcC'tA ,M X7 B'M{C' +TrABcDtDD'~D" 

= --2tcC't(A A'T ,), '{C' + ~rABCDt DO'~D" (A.31) 

In the second step we used the definition of DA,B,~C,, the complex conjugate 
of equation (A.20); in the third step we used the identity 
[ AA't BB'tcC't DD'qTA,B,C,D" -- I -zTrABco,  and in the last step we simplified the first 
term using tA'AtA,B =�89 Similarly DAB~tC Can be written as DAB~tC = 
2tcC't{A A' X7 O)A'~ C" -- 2[t(A A'x7 B)A'tcc']~ c' +~rABcDtDO'~D" Using the rela- 
tion [which follows from (A.26)] ~rABcDt ~  --t<AA'~7 B)a,tc e' in the second 
term, 

D A BBtc = 2 tcC't<A A' V B)A'qC" -- ~rABcDt DD'qD' (A.32) 

Comparing (A.31) and (A.32) leads to (A.30). 

A.3. "Initial Value Formulation" of Spinor Equations. In order to 
express a field equation in a "3 + 1" form, we need to write the covariant 
derivative operator ~7 A'A in terms of a spatial derivative operator and a 
suitable time derivative. The first step is to unprime the primed index in 
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V A'A: Vr2tt~A'V A A ' = ( V r 2 e A l ~ / 2 ) t ' V  +~/2t (BA'V A)A ' w h e r e  t . V =  
t~4a4" V' MM'- The first term represents the time derivative s and the second 
represents the "spatial" derivative. When Zt has a nonzero extrinsic curva- 
ture, v~t<eA'V a}A' is not the spatial derivative, which refers only to the 
intrinsic geometry of Y.,. Rather, as we saw in the previous section, DAo 
defined by (A.20) gives the spatial derivative. Now we consider specific 
spinor equations to illustrate the "3 + 1" decomposition. 

(i) Neutrino Equation: V c,c'O c =0.  The datum for the neutrino equa- 
tion is the restriction of r/A on the surface E,. To obtain the evolution 
equation on Et we consider the spinor field on 12, given by 

~[2 t AC" X7 C,Crl C = 0  

which is rewritten as 

~ t t A c ' V  CIC,~I c + (-2 t (Ac 'V c)c,rl c =0  

or 

f2  ecA- +DcA~c+ ~ = 0  -~-~" V~  c ~ - ~ A  

using (A.20) for the second term. Thus, the neutrino equation, expressed in 
terms of the data on E, is 

(A.33) 

Note that there are no constraints on the data. 
(ii) Maxwell 's Equation: x7 c,cO c~ =0.  The data are given by the spinor 

field fftAB) on Z r The evolution and constraint equations are obtained as 
follows: 

TAB: = ~f2 t a C" x7 C,Cdp cB 

: ~ t t Z '  v ~i~.~ ~B + ~t(Z' v ~)~.,~. 

= ~ t .  Vq, AS +DAc,t,CB ~ACMB~,MC + ~ B : o  

Lowering the index B and writing T A B ~ M = T~AB) + ~easT M weobtain T~A m = 0  
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and TM M=O, which correspond, respectively, to the equations 

C elTc(AB)Mq)cM_~ "IT = 0  (A.34) 

DABr B =0  (A.35) 

(A.34) is the evolution equation and (A.35) is the constraint equation on the 
data q~(,~B) and E,. 

(iii) Spin-3~2 Equation: V A,A~WCA =0. The data for the field q~s'cA 
are given by the spinor field ~bmsc): :vI2tAA'~A,(BC} on Y't" The constraint 
and the evolution equations are given by 

TAac: =2tAA'tB B" V A,M~B,CM =0 

In terms of the data, 

TAB C -- 

D 
t. V q'rAMB ~D M ~AMCD ~ DM 

~r ~/M DMsN (A.36) 
2~- ~bBcA + cA N 

Now TAB c can be decomposed into irreducible pieces according to 

2 TAB c = T~ABc ) + ~eC(A~B) + ~X(AeC)B 

where ~e: =eCATABc, ~C: =eABTABc �9 Since TAn c =0, each irreducible piece 
must vanish separately. TcA~c ) =0, h A =0, and OA--0 give, respectively, the 
equations (9.1), (9.2), and (9.3) in the main text. 

APPENDIX B: CAUSAL PROPAGATION OF SPIN-3/2 FIELD 

In this section we show that the characteristic surfaces of the spin-3/2 
equation V A,AqJB,AC =0 are null (which then suggests that the propagation 
of the field is causal). 

We follow the method of Madore and Tait (1973) where characteristic 
surfaces are viewed as surfaces across which there can exist discontinuities 
in the highest-order derivatives appearing in the field equation. Let C be a 
smooth hypersurface in an open region U in M. C can be defined by some 
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smooth function q~ in U as the surface if--0. Then ~ = V a~ is normal to C. 
Now C divides U into two regions U + (for q~>0) and U - (for q~<0). 

Next, consider a spin-3/2 field q~A'BC in U, satisfying the field equation 
~TA,A+B,AC =0. We wish to obtain expressions for possible discontinuities 
across C of ~ A , A ~ B , A C  . To do this denote by +A-+,BC the field +A'BC in the 
regions U =. The discontinuity of the field across C will be denoted by 

(B.1) 

By extending +A~BC smoothly (but otherwise arbitrarily) into U ~, [+A'BC] 
becomes a smooth spinor field in U. Consequently, in the neighborhood of 
C, there exists a smooth spinor field K~,Bc on U such that 

[+A'nc] =~KA'Bc (B.2) 

The discontinuity of the first derivative of the field is 

[V MM, A,BC]IC=(V MM,  )IcKA,BCIc= MM,KA, CIC (9,3) 

The discontinuity occurring in the highest-order derivative in the field 
equation, viz., ~7 ,~,Aq:B,AC is then 

[ V M'M@A'BM] = ~M'MKA'BM ]C = 0 (B.4) 

The second equality follows from the field equation. Equation (B.4) now 
readily implies (a is nul l :  ~M,MKA,BMIc=O=~DM'~M,MKA,BM]c=O ~ 
(~a~a)KA,BD[c=O=~a~a =0. Thus the normal to C is null, i.e., C is a null 
surface generated by (~. 
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